
The folks at Apple tried hard to pretend that the Apple III is not a
hobby computer. Granted, they provided an excellent operating system
(SOS) and many other features that are desirable for a small-business
computer. They also provided Apple II Emulation, which has everything
needed to warm the hobbyist's heart. If Apple had provided a switch that
turned the Apple III into a perfect imitation of the Apple II, it wouldn't
have been very interesting. They didn't do that. The Emulation mode is
reminiscent of a poor vaudeville mimic. You can recognize the character
of the Apple II, but you don't have to look very far to tell that it isn't the
real thing. This poor imitation has always seemed to be the bad news
about the Apple II Emulation mode. The good news is that it is mostly
done in software, so it can be changed. With a little imagination, you can
make the Apple III emulate some versions of the Apple II that the com­
pany never built. That's where the excitement begins.

This series of three articles will describe the important hardware dif-

ferences between the two machines, the organization of information on
the Emulation disk, and specific custom Emulation modes. One will
allow you to play certain Apple II games that couldn't be played before
on the Apple III . Another gives you the use of the full keyboard and
lower-case display. In a more exotic version, you can run Applesoft with
full access to the Apple III hardware. It's a project for the computer
hobbyist, with disk editing, assembly anp disassembly of various pro­
gram segments, and hardware details of two machines. With a little ef­
fort, you'll end up with the freedom to sit down at the keyboard and de­
sign a custom Apple to your liking. You will also understand a lot more
about the operation of the Apple III in all of its personalities.

Emulation Disk Organization. Let's start with a discussion of the
Emulation program and the disk on which it is distributed. The Emula­
tion disk may seem a bit of a mystery, because it has no directory. It con­
tains a straightforward program and copies of both Applesoft and

Integer Basic, all of which are loaded into memory when you boot the
disk. All of the useful data is on disk tracks 0 through 9, but the entire
disk is formatted so that it can be copied easily. Any Apple copy utility,
such as the Apple III System Utilities or the CopyA program distributed
with the DOS 3.3 master disk, will suffice. ·

When you press control-reset, a program in ROM loads disk block 0
into addresses $AOOO through $AlFF and then doc;:s a jump to $AOOO.
On the Emulation disk, this 512-byte boot program]irst checks to see
that it's not in an Apple II environment and then loads the rest of the
Emulation program and both versions of Basic into memory. Of course, ·
both Basics can't be loaded in their ultimate memory locations because
the Apple III has no language card. All the code (ROM in the Apple II)
associated with Integer Basic is loaded into addresses $2000 through
$5AFF. All the code (ROM in the Apple II Plus) associated with Apple­
soft goes into $5BOO through $95FF. The Emulation program fills $AOOO

through $B670, memory that later becomes part of DOS. Table I shows
the details of the memory organization, along with the disk block num­
bers that correspond to each memory segment.

Most of the Emulation program iilvolves responses to all the setup
menu choices-which version of Basic do you want, and what imitation
I/ O card should be connected to the RS-232 port? When you hit return,
the appropriate segments are loaded into high memory, the machine con­
trol registers are set for the Emulation mode, memory above $COOO is
write-protected, and control trarisfers to the Apple II auto-start routine.

The organization of the Emulation disk is wonderfully simple. You
may have noticed that a disk track includes exactly the same amount of
data as can be stored in all the addresses beginning with a given hex
digit-for example, $2000 through $2FFF. The people at Apple have
certainly noticed, because everything that will be located in addresses
$2xxx is on disk track 2, $3xxx corresponds with disk track 3, and so

218

TORY
ERS

DOES YOUR PRESENT SYSTEM
PROVIDE YOU WITH THE

INFORMATION YOU WANT WHEN YOU
WANT IT AND IN THE FORMAT

YOU WANT IT?

S.S.R.'s provided computerized business solutions for
13 yrs. We've learned what you need and we'll satisfy
those needs with INFOTORY'M. Our software utilizes all
the flexibility and potential of the APPLE Ill.
INFOTORY'M provides you with a system that's easy to
learn and use, that satisfies the requirements ofinven­
tory accounting, and most importantly, provides you
with information reporting capability that can't be
provided manually and isn't provided in any other
computerized inventory system.

We accomplished this with ANYREPORT™, our unique
reporting feature that sets INFOTORY™ apart from any
other system. Using it, you can get:

• Quantities, amount sold , cost of sales by vendor, by
product type, or even by key words like "green" or "5/s
inch" within the description (sect. green sofa or fitting
5/s inch copper).

Any data you want-in alphabetical, description,
p/ n, location, descending sales order, or in whatever
order and with whatever data your purchasing function ,
accountant, warehouse or sales people need to per­
form their jobs better.

• Summarized sales and cost of sales information by
product category, by vendor or by each item-MTD
and YTD.

How long would it take you to sort through and list, in
whatever order, your inventory items costing between
$13.00 &. $21.00, purchased from XYZ company, that
have a gross profit of between 25% &. 32%, that you
have more than I 0 of in stock? Use ANYREPORT'M, walk
away and the report's ready when you return. This is
only one of the many benefits of ANYREPORT'M.

To learn more about the many benefits that INFOTORY'M ,
for the APPLE II or the APPLE Ill, can bring to your
business, give us a call or stop in at your nearest
dealer.

S.S.R. Corp.
1600 Lyell Avenue
Rochester, NY 14606
[716] 254-3200

JULY 1983

forth. The Emulation program Is on tracks 0 and 1, with addresses
$A.xxx on track 0 and $Bxxx ort track 1. Table I not only provides a

Destination Boot Disk Description
Address Address Block

Integer Basic Image
C500-C5FF 2000-20FF 10 Slot 5 (Comm card) RO M
C600- C6FF 2100-21FF 10 Slot6 (disk) ROM
C700 - C7FF 2200- 22FF 11 Slot 7 (Comm card) RO M
C800 - CFFF 2300- 2AFF 12-15 Expansion 1/ 0 ROM (empiy)
0000 - 0?FF 2B00- 32FF 15 - 21 Programmers aid #1
0800- 0FFF 3300- 3AFF 21 - 23 08 ROM (empty)
E000 - F7FF 3B00 - 52FF 23 - 29 Integer Basic
F800 - FFFF 5300-SAFF 29 - 20 Autostart Monitor

Applesoft Basic Image
C500 - C5FF 5B00- 5BFF · 20 Slot5 (serial card) RO M
C600- C6FF 5C00 - 5CFF 2E Slot 6 (disk) ROM
C70ci - C7FF 5000 - SOFF 2E Slot? (Comm card) ROM
C800 - CFFF 5E00- 65FF 2F - 32 Expansion 1/ 0 ROM (empty)
0000- F?FF 6600 - SOFF 33 - 46 Applesoft Basic
F800 - FFFF 8E00 - 95FF 47 - 4A Autostart Monitor

Table 1. Address guide to the two Basic images after booting ihe Emulation
disk. All addresses and disk blocks are hexadecimai values.

guide to the location in memory of the Emulation ROM image, but it aJ.
so tells you where to look for the data on the Emulation disk . All you
need are good tools allowing you to examine and modify the contents of
the disk . Table 2 gives the rules for locating the disk block numbers, or
the Apple II track and sector numbers, that contain the data fo r specific
addresses in the Basic images.

Emulation Apple Ill Apple II DOS 3.3
Memory Page Block Number Track Sector
NOOO BO (See note) N 0
N100 BO N E
N200 BO + 1 N 0
N300 BO + 1 N C
N400 BO + 2 N B
N500 BO + 2 N A
N600 BO + 3 N 9
N700 BO + 3 N 8
N800 BO + 4 N 7
N900 BO + 4 N 6
NAOO BO + 5 N 5
NBOO BO + 5 N 4
NCOO BO + 6 N 3
NOOO B0 + 6 N 2
NEOO BO + 7 N 1
NFOO BO + 7 N F

Note: BO = ($10)*N /2. Computation for address $3500: Block number is
($10 * $3)/2 + $2 = $18 + $2 = $1A. Block $1A contains $3400-$35FF.

Table 2. Emulation disk Basic image location guide for Apple 11 and
Apple Ill utilities.

While it is feasible to change the Emulation disk with any of numer·
ous Apple II track/ sector editors, it is easier to load patch programs and
ensure that modifications look right if you edit a whole track, or two, at a
time. Since editors for entire disk tracks are uncommon, a special pro·
gram is in order. The Trackmo~rprogram in listing I at the end of this arti·
cle is written in Integer Basic. Programming in Integer is unlikely to fill
you with nostalgia for the early days of the Apple II. It's useful for mod·
ifying the Emulation and game programs, because you will probably
want the miniassembler that comes with Integer Basic. You can also use
the memory space from $0800 to $DFFF for utilities such as The In•
spector, a first-rate track/ sector utility from Omega Microware.

The comments included with the Trackmover listing explain the pro·
gram logic and the peeks, pokes, and calls that make up for the small set
of commands in Integer Basic. The machine language subrbutines poked
into memory irt lines 2000 through 2080 obtain and save the IOB ad·
dress and do the RWTS calls. Listing 2 shows this routine in assembly
forrrt, but as the Basic program pokes it into memory, you don't need to
center listing 2. The IOB table that controls RWTS is explained in the

JULY1983

DOS 3.3 manual and, in more detail, in the book Beneath Apple DOS by
Worth and Lechner. The sectors from each track are loaded in the order
listed in table 2.

Start a modified Emulation disk with a copy of the original. Then use
Trackmover to load tracks from the copy into memory. You can either
make modifications immediately (using the Apple II Monitor) and re­
write the tracks on your custom Emulation disk, or you can save partial­
ly edited tracks in a DOS 3.3 binary file. The DOS file can then be re­
loaded and edited any time, and the Trackmover progra,m will rewrite the
tracks on the Emulation disk.

The next two articles will describe major modifications to the Emu­
lation disk, but here is a useful change you can make to try out the pro­
cedure. Apple II programs often control the reset vector so that the Ap­
ple II must be turned off and rebooted to run another program. It's a
double nuisance on the Apple III, because you have to reboot the Emu­
lation disk first and then boot the next Apple II disk. You can take con­
trol of this process by changing the Monitor reset vector to the "old"
Monitor entry point. Then the reset in the Apple II mode will result in
the Monitor asterisk prompt. You can reboot with 6 control-P return .

There are two copies of the Monitor on the Emulation disk, and you
will have to change both. Use Trackmover to load track 5 from the Emu­
lation disk into a suitable Apple II location, say $5000. Go to the Moni­
tor and dump the contents of $5AFO through $5AFF:

*5AF0.5AFF
5AFO - 83 7F SD CC 85 FC 17 17
5AF8 - F5 03 62 FA 62 FA 40 FA

Now, try FFFO.FFFF. The contents of these addresses should be the
same. If they aren't, you have a problem, either with your copy of Track­
mover or with an operator malfunction. If they are the same, type

*5A FA:59 FF 59 FF
*5AF8.5AFF

219

5AF8 - F5 03 59 FF 59 FF 40 FA

This changes the nonmaskable interrupt and reset vectors so that they go
to the Monitor cold-start entry point rather than to the auto-start rou­
tine. Return to Basic and the Trackmoverprogram and rewrite the modi­
fied Monitor on track 5 of the Emulation disk. Next load track 9 into
memory. Let's use $5000 again. This time the Monitor isn't in the same
memory pages. Type

*55F8.55FF
55F8 - F5 03 62 FA 62 FA 40 FA

Does that look familiar? Sure enough.

*55FA:59 FF 59 FF
*55F8.55FF
55F8 - F5 03 59 FF 59 FF 40 FA

This procedure should look familiar, too. Return to Basic and use the
Trackmover to replace the modified Monitor on track 9. Put the modi­
fied disk in the internal drive and press control-reset to reboot with your
modified Emulation program. Load the Apple I I program of your choice
and press reset. Voila, the Monitor asterisk! Now, you have control of
your computer.

Apple III Hardware. The most noticeable difference between the
Emulation mode and a real Apple II is the big change in the game pad­
dles. Many games designed for the Apple II won't run on the Apple III.

The Apple III has an eight-input, multiplexed analog-to-digital con­
verter (A/D) to read the game paddles. Only four of its inputs are routed
to the game ports on the back of the machine. The A/D measures the
voltage applied to its terminals. The Apple II measures the resistance be­
tween them. Although the Owner's Guide presents a paddle circuit on
page 130 and suggests that resistors from I K to 700K can be used, don't

How to Choose the Best Modem For Your
Apple®: Now SSM Offers You THE SOURCESM

Haves Novation SSM Apple
Micromodem II'" Applecat II '" Modemcard '"

Yes Yes Yes

No No Yes

Yes Yes . Yes

Yes Yes Yes

No No Yes

No Yes Yes

NO· No Yes

No No >Yes

-Yes Yes Yes

2 yr 1 yr 2 yr

,No No Yes

$379 $389 $325

Trademarks: Micromodem: Hayes Microcomputer Products, Inc. Applecat II : Novation. odemCard: SSM Microcomputer
Products Inc. The Source: Source TeleC:omputing Corporation. a subsidiary of the Readers Digest Association. Dow Jones News/Retrieval:
Dow Jones & Company, Inc. Apple is a registered trademark of Apple Corporation.

count the Yes-es. SSM's
Apple Modemcard: the most
advanced features for the least
money. No external equipment
required. All other modems are
now obsolete.

And with SSM's Transend soft­
ware, your Apple can send
electronic mail or talk to other
computers or information ser­
vices such as the Source and
Dow Jones News/Retrieval®. ffhe
Modemcard is also compatible
with software for the Micro­
modem Ill.

The SSM Modemcard: The only
choice for choosy Apple owners.
Available from your local compu­
ter dealer. Satisfaction is guaran­
teed. Or your money back.

.=711
SSM Microcomputer Products Inc.

2190 Paragon Drive, San Jose,
CA 95131 (408l 946-7400,

Telex: 171171 SSM SNJ

JULY 1983

try rewiring the !SOK-ohm potentiometers from Apple II paddles into
this circuit. Control becomes quite unsatisfactory with resistors much
larger than about 5K ohms.

The software required to read the paddles on the two machines is
very different and will be discussed in detail in part 2. Games that have
internal routines to read the paddles don't work on the Apple Ill. Games
that use the routines in the Monitor do work, because the Monitor sub­
routine has the same entry address and calling parameters. Many games
that use joysticks use the Monitor routine. Virtually none of the single­
paddle games do.

There is a widespread rumor that the Apple III won't generate color
in the Emulation mode. That's partly true. If you get a high-priced RGB
monitor, you won't get color displays in Emulation mode. The single­
connector, composite (NTSC) color monitors don't have good enough
resolution for satisfactory use with the normal eighty-column text dis­
play, but the NTSC color works both in Emulation mode and native
mode. In spite of the fact that the label on the B / W 'video connector re­
mains unchanged, a recent modification has routed the color video sig­
nal to that connector. On older machines, the fifteen-pin color video con­
nector must be used for color displays. The fifteen-pin connection is a
construction project of the ten-minute variety, using easy-to-get parts.
The best advice for the Apple III owner who wants to use color is to get
an NTSC color monitor to use only when color displays are desirable
and stick to the "green screen" the rest of the time. Using both video
ports, both can be connected all the time, and the cost of the two moni­
tors is less than that of a single RGB color monitor.

The Apple III has three sound generators, only two of which can be
used in Emulation mode. One is the Apple II standard that makes a click
with every memory reference to addresses in the $C02x range. The sec­
ond, activated by $C04x memory references, generates a short tone at
about I kHz. It is used as the beep in most Apple III applications. The
third is a six-bit D/ A converter connected to the same 6522 VIA chip
that controls memory bank selection (at address $FFEO). It is responsi­
ble for the audible message from the system diagnostic program: " I'm
okay; system is normal." The logic that turns on the Emulation mode dis­
ables access to the 6522.

Chips for the Apple III system clock are now available in quantity. If
you get one and want to read the clock in Emulation mode, you are out
of luck. The assembly language instruction to read a clock byte is LDA
$C070, but the only byte accessible in the Emulation mode is the mille­
seconds byte. The other seven bytes are switched in by changing the zero­
page register ($FFDO), a function that is possible only in native mode.

A very large number of Apple II owners have modified their com­
puters to display lower-case characters and accept lower-case input from
the keyboard. As a result, Apple II software that expects a lower-case
display is rather common. It will undoubtedly become more common
with the introduction of the Apple Ile; Since both of those functions are
normal to the Apple III, it seems at first that it should be simple to make
the changes in the Emulation mode. The display is easy to fix. The Ap­
ple II character set is a part of the Emulation program. Entry of lower­
case characters is complicated by the fact that the Apple III keys are en­
coded in two bytes. Apple II software normally reads only the byte at
$COOO, which generates the key codes you see when the alpha lock key is
pressed. The shift key has no effect on the alphabetic characters in this
byte. To determine whether they are intended to be upper or lower case,
it is necessary to read the B keyboard byte at $C008. Appendix G in the
Standard Device Drivers Manual explains the bits in byte B. To use the
lower-case characters, the Apple II Monitor must be modified to make
use of the extra byte and eliminate the masks that convert all entered
characters to upper case, regardless of the ASCII code that was input.

The next article is all about games. It includes modifications of the
Emulation Monitor and software tools that allow easy conversion of
many Apple II games so that they will read the Apple III paddles. A
more complete explanation of the Emulation program and the registers
that control the Emuil,Hion mode will be given in the third article. The
discussion will include Emulation program and Monitor modifications
that allow full use of lower case and the exotic Emulation modes possi­
ble with nonstandard states of the control registers.

100 GOTO 2000
120 FOR T= TS TO TE: POKE TR,T: POKE CM,C
140 FOR 1= 1 TO 16: POKE B1 ,AD: POKE SC,S(I)
160 CALL RW: REM Call RWTS
180 E= PEEK (RC): IF E= O THEN 220

221

200 1= 16:T=TE: REM Force end of loop on RWTS
error

220 AD = AD+ SZ: NEXT I: NEXT T
240 RETURN
260 H= PEEK (-16384): IF H< 127 THEN 260
280 POKE - 16368,0:H$=""
300 IF H= 206 THEN H$ ="N"
320 IF H= 217 THEN H$= "Y"
340 H= H- 176
360 IF H> 9 THEN PRINT H$
380 IF H< 10 THEN PRINT H;
400 RETURN
420 L= LEN(H$)
440 IF L> 2 THEN 640: REM More than 2 dig its = error
460 H= O:N=-1000
480 FOR J=1 TO L
500 FOR 1=1 TO 16: REM Locate character in array of hex

digits
520 IF H$(J,J)#HX$(1 ,I) THEN 560
540 N= l- 1:1 =1 6: REM Character found, fix N
560 NEXT I
580 H = 16*H+ N: REM Calculate return value
600 NEXT J
620 RETURN
640 H=-1000: RETURN
660 VTAB 23: TAB 10: POKE 50, 127: PRINT "ERROR - REENTER";:

POKE 50,255: RETURN
680 VTAB 23: TAB 10: PRINT " ";: RETURN
700 CALL - 936: REM Clear screen and home cursor
720 VTAB 2: TAB 1
740 PRINT "DRIVE 1 OR 2? "; : GOSUB 260: PRINT
760 IF (H =1) OR (H = 2) THEN 800
780 GOSUB 660: GOTO 720
800 GOSUB 680

EXTENSION
for the Apple///™

• Change file 1ypes.
• Rese1 proieaion.
•High speed disk rou1ines, JO
Ii mes f as1er Ihan Basic, up
IO 30% savings in disk space.
•Access IO any block on a
disk.

If you program
in Business

Basic,
you shouldn't
be without it.

•A rray manipularion, insert -
deleie elemenrs, move seaions
of arrays, search arrays.
• Characrer S e1 EdiIOr, creme
or edir y our own charaaer sers.

•Disk Block Ediwr, view or
edir any block on a disk.
•And more, all for only 595.

FOXWARE PRODUCTS
165 West Mead Ave., Salt Lake City, Ut. 84101

(801) 364-0394
Apple Ill is a regisiered crademark of Apple CompUler, Inc.

222

820 POKE DR,H: REM Put selected drive into IOB table
840 . VTAB 4: TAB 1
860 PRINT "1 = READ"
880 PRINT "2 = WRITE";: TAB 20: GOSUB 260: PRINT
900 C= 1:C$="READ": IF H= 1 THEN 960
920 C=2:C$="WRITE": IF H=2 THEN 960
940 GOSUB 660: GOTO 840: REM II not 1 or 2 then error
960 GOSUB 680
980 VTAB 5: TAB 20: POKE 50,63: REM INVERSE
1000 PRINT C$: POKE 50,255: REM NORMAL
1020 GOTO 1100
1040 VTAB 7: TAB 1
1060 FOR 1= 0 TO 6: FOR J = 1 TO 6: PRINT" ";:NEXT J:

PRINT : NEXT I
1080 GOSUB 660
1100 VTAB 7: TAB 1
1120 INPUT "START TRACK (HEX) ",H$
1140 GOSUB 420
1160 IF (H<O) OR (H>35) THEN 1040
1180 TS = H
1200 PRINT
1220 GOSUB 680
1240 VTAB 9: TAB 1
1260 INPUT" LAST TRACK (HEX) ",H$
1280 GOSUB 420
1300 IF (H<O) OR (H>35) THEN 1040
1320 TE = H
1340 T=TE- TS
1360 IF (T<O) OR (T>6) THEN 1040
1380 GOSUB 680
1400 VTAB 11: TAB 1
1420 PRINT "START ADDRESS $";: GOSUB 260
1440 IF H>O AND (H+T<8) THEN 1480
1460 GOSUB 660: GOTO 1400
1480 PRINT "000"
1500 GOSUB 680
1520 AD=H*16
1540 VTAB 14: TAB 10
1560 PRINT "ALL OK? (Y/N) ";: GOSUB 260

Create well-planned,
delicious dinners with
The Pizza Program
Here's why America loves
The Pizza Program.

It's the first intelligent menu
planning system. Now deciding
what to fix for dinner is easier
than ever before.

It's the perfect gift for busy
cooks and people on the go.

It's guaranteed to organize
your meal planning - a great
time saver_ And, it comes with
full printing routines for quick
print-outs of menus or shopping
lists.

Included is a food file mainte­
nance program so it's easy to
add variety or change any food
item or group in the system. This
helps you customize and control
each menu to your individual
tastes and budget. You'll enjoy
better nutrition and save money
at the grocery store. It's fun to
use and a great companion for
any kitchen.

In addition, you get a 40-page
documentation manual with easy
to follow instructions. Now, it's
available for the Apple II Plus,
lie, or the IBM PC.'

Your complete satisfaction
means everything to us. We invite

Just $34.50
you to try The Pizza Program for
30 days before you decide. If
you 're not completely satisfied,
our guaranteed return privilege
assures you of a prompt and
courteous refund. There's no
risk.

To try it, send a check for
$34.50 plus $2 for shipping and
handling. (In California add $2.24
sales tax). Or, use your VISA or
MasterCard and call toll free.
Call today. We ship promptly by
first class mail.

ORDER TOLL FREE
(24/h rs/day)

800-453-4000
(in Utah call 1-800-662-8666)

courmet
Software
671 Eden Avenue
San Jose, CA 95117

·Apple and I BM PC are respectively
registered trademarks of Apple Computer,
Inc. and International Business Machines.

JULY 1983

1580 IF H$ = "N" THEN 700
1600 IF H$ = "Y" THEN 1640
1620 GOSUB 660: GOTO 1540
1640 POKE BO,O: POKE VL,O
1660 GOSUB 680
1680 GOSUB 120
1700 IF E= O THEN 1840
1720 VTAB 17: TAB 1
1740 POKE 50,63: PRINT "ERROR";: POKE 50,255
1760 l = E/ 16:J = E- 16*1
1780 PRINT " CODE = ";HX$(1+1);HX$(J+1)
1800 GOTO 1880
1820 GOSUB 120
1840 VTAB 17: TAB 18: POKE 50,63
1860 PRINT "DONE": POKE 50,255
1880 VTAB 20: TAB 5
1900 PRINT "MORE? (Y/N) ";: GOSUB 260
1920 IF H$ = "Y" THEN 700
1940 PRINT: PRINT "END"
1960 CALL - 1233
1980 END
2000 RW = 768:SZ=1
2020 POKE 768,32: POKE 769,227: POKE 770,3: POKE 771,32:

POKE 772,217: POKE 773,3
2040 POKE 774, 176: POKE 775,6: POKE 776, 160: POKE 777, 13:

POKE 778, 169
2060 POKE 779,0: POKE 780, 145: POKE 781 ,0: POKE 782,96:

POKE 783,32: POKE 784,227
2080 POKE 785,3: POKE 786, 132: POKE 787,0: POKE 788, 133:

POKE 789, 1: POKE 790,96
2100 DIM S(16),H$(4),HX$(16),C$(5)
2120 FOR 1= 2 TO 15:S(l) = 16-I: NEXT I
2140 S(1) = 0
2160 S(16) = 15
2180 HX$ = "0 123456789ABCDEF"
2200 CALL 783: REM Get address of IOB table from

DOS
2220 AD = PEEK (0)+256*(PEEK (1) - 256): REM Calculate IOB

address
2240 SC = AD + 5: REM Sector
2260 B 1 = AD + 9: REM Buller address, high byte
2280 BO = AD + 8: REM Bull~n address, low byte
2300 TR = AD + 4: REM Track
2,320 VL = AD + 3: REM Volume
2340 CM = AD + 12: REM RWTS command
2360 RC = AD + 13: REM Return code,< > 0 indicates

error
2380 DR = AD+2: REM Drive
2400 TEXT : CALL - 936:REM Clear screen, home cursor
2420 VTAB 3
2440 PRINT "THIS PROGRAM READS FROM AND WRITES TO"
2460 PRINT "DISKS IN APPLE 111 BLOCK ORDER"
2480 PRINT
2500 PRINT "FULL DISK TRACKS ARE TRANSFERRED TO"
2520 PRINT "AND FROM MEMORY SUPERPAGES"
2540 PRINT : PRINT " EXAMPLE PAGE: $2000 - $2FFF": PRI NT
2560 PRINT "PAGES $1 TO $7 ARE AVAILABLE"
2580 PRINT
2600 PRINT "ENTER ALL VALUES IN HEXADECIMAL"
2620 PRINT
2640 TAB 10: INPUT " HIT RETURN ",H$
2660 GOTO 700

Listing 1. Trackmover program to transfer disk tracks to and from memory.
Integer Basic.

0300 20 E3 03 JSR $03E3 ;Get IOB address
0303 20 D3 03 JSR $03D3 ;Call RWTS
0306 BO 06 BCS $030E ;On error, return
0308 AO OD LDY #$OD ;IOBerror-byte offset
030A A9 00 LDA #$00 ;Zero for no error
030C 91 00 STA ($00),Y ;Store in IOB
030E 60 RTS

030F 20 E3 03 JSR $03E3 ;Get IOB address
0312 84 00 STY $00 ; Low byte in $00
0314 85 01 STA $01 ;High byte in $01
0315 60 RTS

Listing 2. Assembly listing for me pokes in listing 1 lines 2000 through 2080.
It is not necessary to type this in. ll

Few of the games written to use the Apple II game paddles will run
on the Apple III in Emulation mode. The reason for this unfortunate
situation is that the hardware in the Apple III requires very different soft­
ware to read the paddles. Games that use the Monitor subroutine at
$FBIE work on both machines, but many games contain their own rou­
tines that work only with the Apple II paddles. This article presents
changes in the Emulation Monitor and a technique for altering games so
they will work on the Apple III .

The previous article in this series described the organization of the
Emulation disk and presented the Trackmover utility program to assist
with alterations of the Emulation disk. The Trackmover or another disk
zap utility will be needed to modify the Emulation program and some of
the games.

The software solution to the game problem involves substantial mod­
ifications of the Apple II Monitor supplied on the Emulation disk. It al-

so requires that you locate and change the routines in the games that
read the paddles. This sounds formidabie at first, but the tools in this ar­
ticle will allow you to convert a typical game in just a few minutes.

There is a catch, however. You must be able to modify the binary game
file on the disk, which means that you can fix only those games that are
available as DOS files. Some copy-protected games can be modified. The
game file of many recent games is a normal DOS 3.2 or 3.3 file, even
though the disk is copy-protected. The game file can be copied to
another disk and modified as described here. You can often then run the
game if you bload the modified game file, insert the original master disk
in the drive, and then start the game with a call to the first address in the
game file. It helps if the copy of the game file occupies the same tracks
and sectbrs on the disk as the original, so the disk head is in the same po­
sition after the game is loaded from either disk.

In many, perhaps most, cases where the game file is a normal DOS

file, the protection scheme won't balk if you modify the original disk us­
ing a track/ sector editor. Of course, attempting to modify an original
master that is so well protected that you can't make a backup is a fairly
high-stakes computer game. Don't try it unless you are willing to accept
some losses.

Here's an outline of the prooess we'll use to make games run on the
Emulation Apple:

1. Revise the Monitor program so that the paddle initialization is
done in subroutines.

2. Replace paddle initialization instructions (LOA $C070) in the
game with calls to the appropriate subroutine.

3. Replace paddle test instructions, usually LOA $C064 or LOA
$CQ65, with LOA $C066.

In many games only four bytes need to be changed.
Paddle Reading and Monitor Modifications. Let's look at the sub-

routines that read the paddles. Listing I is the paddle-reading subroutine
from the Apple II Monitor. Listing 2 is the paddle-reading routine fur­
nished on the Emulation disk. The substantially longer Apple III rou­
tine is broken into two pieces to preserve parts of the Monitor that other
programs will likely use. There is space for this long routine. because the
omission of cassette tape routines leaves about one hundred unused bytes
in the Monitor. These free bytes allow numerous interesting modifica­
tions of the Emulation Apple.

To a calling program, the two subroutines are functionally identical.
The paddle number is in the X register when the subroutine is called. The
paddle value is in the Y register, with the X register unchanged, on re­
turn from the subroutine.

The first, and largest, part of the Apple III routine is devoted to pad­
dle selection. Commands must be given to select one of eight inputs to
the analog-to-digital converter (A/ D). The selection requires reference to

90 ~ s () ~ I A [K AUGUST 198~
one member of each of three pairs of memory ad<;lresses. Figure 1 sum- the Apple II counting routine is used, it requires about 2.55 volts' input
marizes the selection rules. to reach the full output value. The loop used in the Apple III remedies

After the paddle has been selected, the operating principle of the Ap- this problem by effectively counting only half-range and then doubling
pie III routine is the same as that of the Apple II routine. Why is it so the output.
much more complicated? Apple decided that. the reference voltage re- It is easy to fix a paddle or joystick so that its full range is about 2.6
quired to yield a paddle output of 255 (or $FF) should be 2.4 volts. That de- volts, and it will work with the standard counting software. You can
cision is based on joysticks that use 20 percent of the total potentiometer build a very nice paddle from scratch for about ten dollars. Directions
rotation for full joystick deflection. If the joystick is connected to 12 for modifying the Cursor III joystick are given with figure 2.
volts, 20 percent of the range yields a maximum output of 2.4 volts. If Achieving simplicity in game alterations requires the rebuilding of the

0000: 2 .
0000: 3 ;
----- NEXT OBJECT FILE NAME IS AP2PADDLE.OBJO
FB1E: 4 ORG $FB1E
FB1E:AD 70 CO S PREAD LOA $C070
FB21 :AO 00 6 LOY #$00
FB23: EA 7 NOP
FB24:EA B NOP
FB2S:BD 64 CO 9 PREAD2 LOA $C064,X
FB2B: 10 04 10 BPL RTS2D
FB2A:CB 11 INY
FB2B:DO FB 12 BNE PREAD2
FB2D:BB 13 DEY
FB2E:60 14 RTS2D RTS

Listing 1. Paddle-reading subroutine from the Apple 11 Monitor.

0000: 2
0000: 3
0000: 4
FCC9: S PART2 EQU $FCC9
0000: 6 :
----- NEXT OBJECT FILE NAME IS AP3PADDLE.OBJO
FB1E: 7 ORG $FB1E
FB 1E:BA B TXA
FB1F:4B 9 PHA
FB20:49 01 10 EOR #$01
FB22:AA 11 TAX
FB23:AD S9 CO 12 LOA $COS9
FB26:AD SE CO 13 LOA $COSE
FB29:AD SA CO 14 LOA $COSA
FB2C:4C C9 FC 1S JMP . PART2

----- NEXT OBJECT FILE NAME IS AP3PADDLE.OBJ 1
FCC9: 16 ORG $FCC9
FCC9:EB 17 INX
FCCA:CA 1B DEX
FCCB:FO 12 19 BEQ PDLSET
FCCD:AD SF CO 20 LOA $COSF
FCDO:CA 21 DEX
FCD1:FO OC 22 BEQ PDLSET
FCD3:AD SB CO 23 LOA $COSB
FCD6:CA 24 DEX
FCD7:FO 06 2S BEQ
FCD9:AD SE CO 26 LOA
FCDC:AD SB CO 27 LOA
FCDF:AD SC CO 2B PDLSET LOA
FCE2:A9 OF 29 LOA
FCE4:20 AB FC 30 JSR
FCE7:A4 BO 31 LOY
FCE9:AD SD CO 32 LOA
FCEC:A2 4B 33 INIT LOX
FCEE:CA 34 DEX
FCEF: 10 F B 3S BPL
FCF1 :EB 36 PREAD2 INX
FCF2:B9 E6 B-F 37 LOA
FCFS:2A 3B ROL
FCF6:AD 66 CO 39 LOA
FCF9:30 F6 40 BMI
FCFB:BA 41 TXA
FCFC:10 04 42 BPL
FCFE:A9 FF 43 LOA
FDOO:DO 01 44 BNE
FD02:2A 4S M UL T2 ROL
FD03:AB 46 OUTPUT TAY
FD04:6B 47 PLA
FDOS:AA 4B TAX
FD06:60 49 RTS

PDLSET
$COSE
$COSB
$COSC
#$OF
$FCAB
$BO
$COSD
#$4B

INIT

$BFE6,Y
A
$C066
PREAD2

MULT2
#$FF
OUTPUT
A

Listing 2. Paddle-reading subroutine from the Emulation Monitor.

paddle software in the Monitor. DOS Tool Kit assembly listings of the
four Monitor patches are given in listings 3 through 6 at the end of this
article. Assemble the four routines and use the Trackmover program to
install them as described in the following paragraphs.

Start with a copy of an Emulation disk that already has the modified
reset vector described last month. Otherwise, make that modification
along with those described in this article. Load track 5 into memory at
address $5000, then exit to Basic and load the patch routines as follows:

BLOAD MONFIX1.0BJO,A$S61E
BLOAD MONFIX2.0BJO,A$S7C9
BLOAD MONFIX3.0BJO,A$S9CE
BLOAD MONFIX4.0BJO ,A$S9FE

Input selected COSB=O
C059=1

Ground reference 0
Apple II paddle 3 0
Apple 11 paddle ? 0
Not used 0
Apple 11 paddle 1 1
Apple 11 paddle 0 1
Clock battery 1
2 .4 volt reference 1

C05A=O C05E=O
COSS= 1 C05F=1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Figure 1. Apple Ill paddle selection requires memory reference commands
to one member of each of three pairs of addresses. The figure shows which
input is ~elected for each of the eight possible combinations.

6.8K
JSO-X

2.5K
6.8K

JSO-Y
2.5K

JSO-B

JSO-SW

270

GND

+ 5V

+12 v
Figure 2. Modifying the Cursor Ill joystick for Apple 11 Emulation. The circuit of
the Cursor Ill joystick is identical to that shown on page 130 of the Owner's
Guide, using 2.SK potentiometers. Adding two 6.BK, 0.2S W resistors as
shown will increase the maximum output voltage to about 2.6V for use with
software that mimics the Apple II routines.

The Apple II uses a left-handed X-Y coordinate system for its screen dis­
play convention; the Apple Ill is right-handed. As a result no orientation of
Cursor Ill is right for Apple II joystick applications. To fix this, interchange the
connections at the two ends of one of the potentiometers. You will then have
to recenter the joystick control. Loosen the set screw and take the joystick as­
sembly off of the potentiometer shaft. Rotate the shaft until a simple Apple­
soft program indicates that the paddle value is about 12B. Then reassemble
the joystick. Getting the control centered properly with everything assem­
bled and the set screw tight takes some patience.

: AUGUST 1983 SO~IALK~ 91

>f

s
s
h

3-

Jf
18

/8
S­

e­
le
n-

It will be easier to modify track 9 if you save the entire modified por­
tion of the Monitor as a single file:

BSAVE MONMOD ,A$5600 ,L$500

Use the Trackmover to restore the $5000 address block to track 5 on
th\: disk and then load track 9 into the $5000 block . Now bload
Monmod,A$5100 and restore track 9 to the modified Emulation disk.

The Monitor modifications separate paddle selection and the A/D
conversion timing so that the paddle selection is performed by subrou­
tines. The assembly instructions to call these subroutines are:

paddle O select
paddle 1 select
paddle 2 select
paddle 3 select

20 DO FE
20 07 FE
20 17 FF
20 OA FF

JSR $FEDO
JSR $FED?
JSR $FF17
JSR $FFOA

There are two multipaddle subroutines. The standard paddle-read­
ing routine at $FBIE accepts a paddle number in the X register and re­
turns the resulting value in the Y register. This subroutine is used by Ba­
sic and many games. A comparable, alternative subroutine at $FEFE
samples paddle 2 when paddle I is requested and vice versa. This allows
use of a joystick that is plugged into port A (paddles 0 and 2) without
modifying anything except the address of the subroutine call and the
paddle I firing-button check.

Game Modification. The typical arcade game has a built-in paddle
routine that is nearly identical to the one in the Apple II Monitor. Some- .
times, though, there are changes designed to limit the numerical range of
the output values. Here is an example taken from a game with a non•
standard routine to read paddle 0. The example also shows the changes
you must make to fix the game so that it will read the Apple III paddles,
using the modified Monitor. The memory contents are shown for the
two modified instructions.

Address Original version Modified version

1800 - AD 70 co LOA $C070 20 DO FE JSR $FEDO
1802 - AO 24 LOY #$24 LOY #$24
1804 - EA NOP NOP
1805 - EA NOP NOP
1806 - AD 64 co LOA $C064 AD 66 co LOA $C066
1809 - 10 05 BPL $1810 BPL $1810
1808 - CB INY INY
180C - co 9E CPY #$9E CPY #$9E
180E - 90 F6 BCC $1806 BCC $1806
1810- C4 10 CPY $10 CPY $10
1812 - DO 01 BNE $1815 BNE $1815
1814 - 60 RTS RTS

Game conversion to run with the revised Monitor requires locating
the paddle routines in the game, a little disassembly to be sure that the
paddle reading isn't too convoluted, and modification of just a few bytes,
as illustrated above. In many cases, the whole procedure can be com­
pleted in five minutes or so. There are a few hopeless cases in which a sin­
gle LDA $C070 instruction initiates an interlaced set of instructions to
read two or more paddles.

To fix a game so that it will run on the Apple III, you will have to lo­
cate the paddle-reading routines, make changes as previously shown, and
save the modified game on the disk. The DOS bsave command balks at
files larger than 32, 767 bytes (129 sectors on the disk). If the game file is
smaller, just bload Game,A$1000 from the Monitor. Then check the
length of the file. The low-order byte of the length is in $AA60 after the
load; the high-order byte is in $AA61. You will need this iDformation to
save the file after you have fixed it.

After the file is in memory, you have to find all the instances of LOA
$C070 or BIT $C070 instructions to find all the places where the game
needs to be changed. There are utility programs (such as The Inspector,
by Omega Microware) that have built-in memory and disk-search
features.

If you don't have one of these, the program given in listing 7 will do
the job for you. It loads into the page-three area that is universally used
for small assembly language routines. After it is loaded, type 300G from

the Monitor to link it to the Monitor control-Y instruction. Memory ad­
dress $00 contains the number of bytes in the pattern to be located, and
the pattern is loaded into memory beginning at $01. Limit patterns to
nine bytes or less to avoid destroying important zero-page locations. On
a practical basis, a three-byte pattern almost always yields just a few lo­
cations. To find all of the LDA $C070 instructions in the memory range
from $1000 to $90FF, enter this from within the Monitor.

0:3 AD 70 CO
1000.9000 control-Y

The address of the $AD byte for each paddle routine in the address
range will be printed on-screen after you type return. Disassemble the
paddle routine in each location to be sure what is going on. An LOA
$C064 instruction, as shown in the example just given, indicates paddle 0.
Similarly, LOA $C065 indicates paddle I. Replace the LOA $C070 in­
struction with a JSR instruction to initialize the appropriate paddle. Al­
so, replace LOA $C06x with LOA $C066.

If you have a joystick with connections only to a single joystick port,
then you will want to use paddle 0 and paddle 2 where the normal Apple
II organization uses paddles 0 and 1. If the two paddle routines are inde­
pendent, then use JSR $FF! 7 in place of the LOA $C070 that starts the
paddle 1 read in the game. You will also have to change the firing-but­
ton commands to use buttons 0 and 2. Button I is read by LDA $C062;
change it to LOA $C063 for the paddle 2 button.

Many games using joysticks employ the Monitor routine at $FB IE
to read them. These games run without modification if you can connect
your joystick to the normal paddle 0 and 1 combination. The Monitor
patches include an option that interchanges the logical paddle 1 and pad­
dle 2 assignments. Change JSR $FB1E in the game to JSR $FEFE to
perform the swap. The normal subroutine, at $FBIE, could be changed
to the swapped configuration quite easily, but this isn't a universal solu­
tion. Game conversion often would still require changing the firing-but­
ton commands.

Because of the file-length limitation with the DOS bsave command,
extremely long game files must be searched in pieces to find all of the
paddle routines. The Trackmover program presented in part 1 of this se­
ries can be used to assist in this search . Initialize a DOS disk with a mini­
mum hello file and then transfer the game program to it, using Apple's
FID or another disk utility. DOS stores programs on a newly initialized
disk in consecutive tracks and sectors. You can expect to find the hello
program on track $12 and the first track/sector list for your game on
track $13, sector $F. The track allocation continues with tracks $3
through $A. In spite of the fact that DOS is quite consistent, it's a good
-idea to find and check the track/sector lists to determine exactly what
part of the disk contains your program. The catalog entry, with a point­
er to the track/ sector list, is on track $11, sector $F, if the game is the sec­
ond program recorded after initializing the disk. Both the DOS 3.3 man­
ual and Beneath Apple DOS, by Don Worth and Pieter Lechner, pro­
vide guides to the interpretation of catalog entries and track/ sector lists.

Use the Trackmover program to load seven program tracks into the
memory range $1000-$7FFF. Each track will be loaded in its proper
memory order if you change two program lines in Trackmover.

2140 S(1) = 15
2160 S(16) = 0

Use the pattern-location program to find the paddle-control rou­
tines. Modify the paddle control with the Monitor or the Miniassem­
bler, and then use the Trackmover to save the modified portions back to
the same place on the disk. Continue with the remaining tracks that con­
tain portions of the game program until you are sure that you have lo­
cated and modified all of the paddle-control routines. Few games have
more than two paddle control routines.

Next month, we'll go into the workings of the Emulation program it­
self, including the instructions that set up the Emulation mode. Study of
the details of the Emulation program makes possible useful modifica­
tions, such as the reading and display of lower-case characters. It also
makes possible more exotic Emulation Apples, if the machine-control
register setup is different from that furnished on the Emulation disk.
Meanwhile, try modifying some games to work on the Apple III. You'll
find that the conversion is an enjoyable and rewarding challenge.

92

Listing 3. Emulation Monitor patch 1 for use with Apple 11 games.

0000: 2
0000: 3
0000: 4 ***************************************

0000: 5
0000: 6 APPLE Ill EMULATION MODE
0000: 7 PADDLE-SERVICE ROUTINES
0000: 8
0000 9 MONITOR PATCH ROUTINE #1
0000: 10 NORMAL PADDLE ENTRY
0000 11
0000: 12 PADDLE NUMBER IN X
0000 13 VALUE READ RETURNS IN Y
0000: 14
0000: 15 '
0000: 16
0000: 17 ***************************************

0000: 18
FCC9: 19 NORMSET EQU $FCC9
0000: 20 '
--- -- NEXT OBJECT FILE NAME IS MONFIX1.0BJO
FB1E: 21 ORG $FB1E
FB1E:20 C9 FC 22 JSR NORMSET
FB21 :AO 00 23 LOY #$00
FB23:EA 24 NOP
FB24:EA 25 NOP
FB25:AD 66 CO 26 PREAD2 LOA $C066
FB28: 10 04 27 BPL RTS2D
FB2A:C8 28 INY
FB2B:DO F8 29 BNE PREAD2
FB2D :88 30 DEY
FB2E:60 31 RTS2D RTS

Listing 5. Emulation Monitor patch 3.

0000: 2
0000: 3 ***************************************

0000: 4
0000: 5
0000: 6
0000: 7
0000: 8
0000: 9
0000: 10
0000: 11
0000: 12

APPLE Il l EMULATION MODE
PADDLE-SERVICE ROUTINES

MONITOR ' PATCH ROUTINE #3
PADDLE 0 & 1 INITIALIZATION

0000: 13 ***************************************

0000: 14
FCA8: 15 WAIT EQU $FCA8
0000: 16 '
---- - NEXT OBJECT FILE NAME IS MONFIX3.0BJO
FECE: 17 ORG $FECE
FECE:68 18 PDLOX PLA
FECF:AA 19 TAX
FEDO:AD 5F CO 20 POLO LOA $C05F
FED3:DO 05 21 BNE PX
FED5 68 22 POL 1X PLA
FED6:AA 23 TAX
FED7:AD 5E CO 24 POL 1 LOA $C05E

$C059
$C05A

F EDA:AD 59 CO 25 PX LOA
FEDD:AD 5A CO 26 LOA
FEEO: 27
FEEO 28

FEEO: 29

FEEO: 30

FEEO: 31
FEEO: 32
FEEO:AD 5C co 33
FEE3:A9 OF 34
FEE5 20 A8 FC 35
FEE8:AD 50 co 36
FEEB:38 37
FEEC:A9 OE 38
FEEE:E9 01 39
FEFO:DO FC 40
FEF2:60 41

GO

PADDLE SELECT IS COMPLETE AT
THIS POINT
FOLLOWING STATEMENTS INITIATE
THE AI D
NOTE THAT X AND Y ARE
UNCHANGED
FROM HERE THRU THE RTS

LOA $C05C
LOA #$OF
JSR WAIT
LOA $C05D
SEC
LOA #$OE

WAIT4 SBC #$01
BNE WAIT4
RTS

AUGUST 1983

Listing 4. Emulation Monitor patch 2.

0000: 2 ***** *** *********** * ** **** * ** ******** * *

0000: 3
0000: 4
0000: 5

) 0000: 6
0000: 7
0000: 8
0000: 9
0000: 10
0000: 11

APPLE Ill EMULATION MODE
PADDLE-SERVICE ROUTINES

MONITOR PATCH ROUTINE #2
NORMAL PADDLE SETUP SEQUENCE

0000: 12 ** ***** *********** ** ********* ******* ** *

0000: 13
FECE: 14
FED5: 15
FF15: 16
FF08: 17
0000: 18

PDLOX
POL 1X
PDL2X
PDL3X

EQU
EQU
EQU
EQU

$FECE
$FED5
$FF1S
$FF08

----- NEXT OBJECT FILE NAME IS MONFIX2.0BJO
FCC9: 19 ORG $FCC9
FCC9:8A 20 NORMSET TXA
FCCA:48 21 PHA
FCCB:FO OF 22 BEQ JMPOX
FCCD:CA 23 DEX
FCCE:FO 09 24 BEQ JMP1 X
FCDO:CA 25 DEX
FCD 1 :FO 03 26 BEQ
FCD3:4C 08 FF 27 JMP
FCD6:4C 15 FF 28 JMP2X JMP
FCD9:4C 05 FE 29 JMP 1X JMP
FCDC:4C CE FE 30 JMPOX JMP

JMP2X
PDL3X
PDL2X
POL 1X
PD LOX

Listing 6. Emulation Monitor patch 4.

0000: 2
0000: 3 ****** * * * ***** * ***** * ***** ** ********** *

0000: 4
0000: 5
0000: 6
0000: 7
0000: 8
0000: 9
0000: 10
0000: 11
0000: 12
0000: 13

APPLE Ill EMULATION MODE
PADDLE-SERVICE ROUTIN ES

MONITOR PATCH ROUTINE #4
PADDLE INITIALI ZATION FOR
SWAPPED PADDLE 1 AND 2

0000: 14 * ** *** *************** * *** ** * * ****** * * **

0000: 15
FECE: 16 PDLOX
FED5: 17 POL 1X
FEEO: 18 GO
FB 25: 19 PREA D2
FEFE: 20 SWAPSET
000~ 21 ;

EQU
EQU
EQU
EQU
EQU

$FECE
$FEDS
$FEEO
$FB2S
$FEFE

----- NEXT OBJECT FI LE NAME IS MONFIX4 OBJO
FEFE: 22 ORG $FEFE
FEFE:8A 23 SWAPPED TXA
FEFF:48 24 PHA
FFOO:FO CC 25 BEQ PDL'.OX
FF02:CA 26 DEX
FF03: FO 10 27 BEQ PDL2X
FF05:CA 28 DEX
FF06:FO CD 29 BEQ PDL1X
FF08:68 30 PDL3X PLA
FF09:AA 31 TAX
FFOA:AD 58 CO 32 PDL3 LOA
FFOD :AD SA CO 33 LOA
FF10:AD SF CO 34 LOA
FF13:DO CB 3S BNE
FF1 S: 68 36 PDL2X PLA
FF 16:AA 37 TAX
FF17:AD S8 CO 38 PDL2 LOA
FF1A:AD SB CO 39 LOA
FF1D :AD 5E CO 40 LOA
FF20:DO BE 41 BNE
FF22:20 FE FE 42 SPREAD JSR
FF2S:4C 2S FB 43 JMP
FF28:00 44 BRK

$COS8
$COSA
$COSF
GO

$COS8
$COSB ·
$COSE
GO
SWAPS ET
PREAD2

:::: AUGUST 1983 SO~TALKIJ 93

Listing 7. Program to locate byte patterns in Apple 11 memory.

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

2
3
4
5
6
7
8
9

BYTE PATTERN LOCATOR
ENTER NUMBER OF BYTES IN PATTERN
INTO LOCATION $00. ENTER PATTERN
BEGINNING IN LOCATION $01.

10
INITIALIZE MONITOR HOOK BY 300G.
SEARCH ADDRESS RANGE USING
XXXX.YYYY CTRL-Y RETURN

0000: 11 PATTERN START ADDRESSES WILL BE
PRINTED ON-SCREEN

0000: 12
0000: 13
0000: 14
0000: 15
0000: 16 ***************************************

0000: 17
0000: 18 NUMBYT
0001: 19 PATTERN
003C: 20 A1
003D: 21 A 1H
003E: 22 A2
003F: 23 A2H
0040: 24 A3
0041: 25 A3H
03F8: 26 VECTOR
FDDA 27 PRHEX
FDED: 28 COUT
0000: 29 '

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$00
$01
$3C
$3D
$3E
$3F
$40
$41
$3F8
$FDDA
$FDED

----- NEXT OBJECT FILE NAME IS PATTERN.300.0BJO
0300: 30 ORG $300
0300: 31
0300: 32 , PUT JUMP INSTRUCTION TO PROGRAM
0300: 33 START INTO $3F8 FOR CTRL-Y ENTRY
0300: 34
0300: A9 4C 35
0302:8D F8 03 36
0305:A9 10 37
0307:8D F9 03 38
030A:A9 03 39
030C:8D FA 03 40
030F:60 41
031Q 42

LDA
STA
LDA
STA
LDA
STA
RTS

#$4C
VECTOR
#>START
VECTOR + 1
#<START
VECTOR+2

0310: 43 START PATTERN FINDER
0310: 44
0310:A9 00 45 START
0312:A4 3C 46
0314:85 3C 47
0316:20 32 03 48
0319:18 49
031A:90 03 50
031C: 51

LDA
LDY
STA
JSR
CLC
BCC

#$00
A1
A1
SRCHP1

INCX

031C: 52 MAIN LOOP TO SEARCH MEMORY
031C: 53
031C:20 30 03 54 LOOP JSR

INC
LDA
SEQ
CMP
SEQ
CMP
sec
SEQ
RTS

SRCHPG
A1H 031F:E6 3D 55 INCX

0321 A5 3D 56
0323:FO OA 57
0325:C9 CO 58
0327: FO F6 59
0329: C5 3F 60
0328:90 EF 61
032D:FO ED 62

A1H
RTS1
#$CO
INCX
A2H
LOOP
LOOP

032F: 60 63 RTS 1
0330: 64
0330: 65

0330: 66
0330: 67
0330:AO 00 68
0332:A5 01 69
0334:D1 3C 70
0336:FO 04 71
0338:C8 72
0339:DO F9 73
0338:60 74

SUBROUTINE TO SEARCH ONE
MEMORY PAGE
FOR DESIRED PATTERN

SRCHPG LDY #$00
SRCHP1 LDA PATTERN
SRCLOOP CMP (A1),Y

SEQ EQUAL
INY
BNE SRCLOOP
RTS

033C:84 40 75 EQUAL STY A3
033E:A5 3D 76 LDA A1H
0340:85 41 77 STA A3H
0342:A2 01 78 LDX #$01
0344:E8 79 NEXTBYT INX
0345:8A 80 TXA
0346:C5 00 81 CMP NUMBYT
0348:FO 02 82 SEQ TEST
034A:BO 11 83 BCS PRADR
034C:B5 00 84 TEST LDA NUMBYT,X
034E:C8 85 INY
034F:FO 06 86 SEQ NEXTPG
0351:D1 3C 87 COMPARE CMP (A1),Y
0353:FO EF 88 SEQ NEXTBYT
0355:DO DB 89 BNE SRCHP1
0357:E6 3D 90 NEXTPG INC A1H
0359:DO F6 91 BNE COMPARE
035B:FO 21 92 SEQ ENDER
035D:A5 41 93 PRADR LDA A3H
035F:20 DA FD 94 JSR PR HEX
0362:A5 40 95 LDA A3
0364:20 DA FD 96 JSR PR HEX
0367:A9 AO 97 LDA #$AO
0369:20 ED FD 98 JSR COUT
036C:18 99 CLC
036D:A5 40 100 LDA A3
036F:65 00 101 ADC NUMBYT
0371:A8 102 TAY
0372:90 BE 103 sec SRCHP1
0374:E6 41 104 INC A3H
0376:FO 06 105 SEQ ENDER
0378:A5 41 106 LDA A3H
037A:85 3D 107 STA A1H
037C:DO 84 108 BNE SRCHP1
037E:68 109 ENDER PLA
037F:68 110 PLA
0380:60 111 RTS •

DUST IS 90% OF ALL MAINTENANCE PROBLEMS.
Washable covers to fit the Apple II, Ile and Apple III. Attractive chocolate brown

suede cloth with beige trim or soft beige with brown trim. Monitor and keyboard cover
$25.00, single disc drive cover $8.00 and dual disc drive cover $10.00. California
residents add sales tax. Please allow 6 weeks for delivery.

Covers by Babette, 42 Caledonia St., Sausalito, CA 94965
(415) 332-0141

0 MasterCard D Bank of America D Check D Money Order

Card # ____ __ exp. date _ _ _ Signature --------

Print Name --------- - - -------- - -
Address ____ _ _ _ City ____ State _ ___ Zip _ _ _

The two previous arti~les in this series have described difference~ be-. .

tween the Apple II and Apple III hardware that affect the Emulation
mode, the organization of the Basic and Monitor images on the Emula­
tion disk, and changes in the Monitor arid games programs that make it
possible to play many Apple II games oh the Apple III. Now we'll delve
more deeply into the Emulation prograin itself tO discover further varia­
tions of the Emulation Apple. The first, with lower-case character dis­
play and keyboard entry, permits the use of programs that use lower-case
display. This includes programs for the Apple Ile that don't require the
eighty-column card. More exotic configuratiops include 60K of RAM
and the use of Apple II software irt an Apple III hardware environment,
with delightful and novel results. .

When the Emulation program boots, the first twelve disk blocks are
loaded in sequence to install the program ihto the address range $AOOO
through $B677. (Block 0 oceupies $AOOO through $A I FF; block i fills

tH·--Htt~

~ • r ..
bi I • '

$A200 through $A3FF, and so forth .) The prog~am is an interestirig ap­
plication of the "memory is cheap, but code is expensive" approach.
Code segments are in $AOOO through $A3C4 and $A4C7 through
$A67D . The rest consists mostly of the two text screen images, complete
with all the spaces .

First, let's install a new character set and keyboard handler so we can
use programs written for an Apple with lower-case display, including
some new programs written for the Apple Ile.

Installation and use of a character set with lower case involves three
types of changes to the Emulation mode. The first is the installation of
the character set, which is a modification of the Emulation program. The
second is the modification of the KEY IN routine in the Apple II Moni­
tor so that it will read and interpret both bytes froin the Apple III key­
board. The third is the treatment of inverse and flashing modes in a con­
sistent way. This involves some decisions about what type of consistency

you want and how much work you are willing to do to achieve it.
The problem with inverse and flashing characters arises because there

are only 256 character codes recognized by the character generator. The
Apple II normally displays sixty-four characters, which are translated
into sixty-four character codes for inverse, sixty-four for flashing, and
two normal sets. Adding lower case expands the character set to riinety­
six characters. You can't have full sets of inverse, flashing, and normal
characters, because there are too few character codes. Something has to
give. You can settle for inverse or flashing display of the wrong charac­
ter part of the time, but the most satisfactory solution is to eliminate the
flashing mode entirely.

A simple program will display the entire character set on the screen.
It is written in Integer Basic, as are the other Basic programs in these ar­
ticles. Integer Basic is useful for applications that involve modifications
of binary files, because it includes the Miniassembler and can include

other utilities in the $0800 through $DFFF address space.
First, clear the screen:

100 CALL - 936

Next, set up a loop to poke eight rows, each containing thirty-two
\ .. , ' . , . .

character codes, directly to the screen memory locations.

120 FOR R= O TO 7
140 l = R+1+ R/ 2
160 FOR X= O TO 31
180 C= 32*R+ X

The variable C is the character code. The character displayed does
not have to be the one suggested by the corresponding ASCII value, as is
clear from the absence of lower-case letters in the Apple II character set.
Next, calculate the screen addresses and poke in the characters.

254

200 J = (l-1) MOD 8
220 K= (l-1) /8
240 POKE 1024+ 128*J+ 40*K+ X,C
260 NEXT X
280 NEXT R

Finally, move the cursor down so the Integer prompt doesn 't write over
the display.

300 VTAB 12: PRINT
320 END

The Appl(! III character generator uses 128 character images to gen­
erate the 256 displayed characters. Each character image does double
duty, once in the normal character set, with its character code larger than
128, and again in the inverse set, with the character code 128 less than the
corresponding normal code. On the distributed Emulation disk, the
images in one sixty-four-character set have the most significant bit of
every byte set, so that the characters will flash in the inverse mode. (See
the Standard Device Drivers Afanual, page 166.) When the lower-case let­
ters are added, they must appear in either inverse or flashing format for
character codes 97 through 127 and in normal display for character
codes 225 through 255. The character ROM in the Apple II has 256
characters, giving more freedom in character-set design.

The easiest way to make a new character set is to start with one that
, is already nearly what you want. Several commercial graphics packages

for the Apple include full · character sets in the proper format. Two ex­
amples are the Apple DOS Tool Kit and the Penguin Complete Graphics
System.

SEPTEMBER 1983

You can use the character-editing program, Charedit, shown in
listing I, to examine and inodify character sets.' The program has an ini­
tial menu that allows you to select the character-set editor or hex-deci­
mal conversion utilities that are a byproduct of the normal program
operation . Select option 1, and type in the starting address of the part of
the character set you want to examine. The characters will begin to scroll
by, with an address label for each byte. To make changes, press a key.
Two keys, C and S, have special uses. They give you the option to clear
or set the flashing bit over a range of addresses. Hitting any other key
yields a request to enter the address of a byte to edit. If you dqn't want to
edit anything, enter 0 to return to the request for a display address. A O
response to this request ends the program.

The Apple II character set in the Emulation program is in $AA86
through $AE85 . Use the Trackmover program, presented in the first ar­
ticle, to load track 0 from an Emulation disk at $4000. Each character
occupies an eight-byte cell, one byte for each horizontal row of dots. As
furnished, the · characters sit in the bottom seven rows of the display
space, and the top row is blank. To provide for lower-case descenders,
the characters have to be moved to the top of their display windows. The
Monitor provides 'a quick fix: ·

5000 < 4A87.4E85M
53FF:O

These instructions move the character set to $5000 for editing, removing
the first byte and adding a blank byte at the end. The effect is to move
every character to the top of its display window.

The Charedit program can be used to examine and edit the character
set. The first $!FF bytes have the flashing bit clear, and the next $200
have the flashing bit set. Providing for descenders moved the tops of the
upper-case characters to hex addresses that end in 0 or 8 and displaced
the alignment of the flashing bits from the character cc;:lls by one byte.
Use the C option to clear the flashing bits in $51 FF through $53FF. The
character cell 'that will become the letter "a." begins at $5308, corre-
sponding with ASCII code 97. · ·

The DOS Tool Kit character set has ninety-six characters. If you load
it at $3000, the "a" is at $3208. Use the Monitor move command,
5308<3208.32FFM, to add it to the new character set. The Penguin char­
acter set has 128 characters, so the lower case starts at $3308 if you fol­
low a similar procedure. If you use another commercial graphics charac­
ter set, use Chatedit to determine the lower-case character location .

Check the new characters for flashing bits, edit any characters you
think should be changed, and return the character set to the Emulation
program with 4A86 < 5000.53FFM. Use the Trackmover program to
restore the modified Emulation program to your lower-case Emula­
tion disk .

With the new character set installed, you can display lower-case char­
acters in programs that already have thc::m, but you can't enter them
from the keyboard. The Monitor reads only. one of the two bytes re­
quired to decode the keyboard. It doesn't know that the shift and alpha
lock keys exist.

A revised Monitor KEYIN subroutine and a few minor patches in
the character handling elsewhere will remedy the problem. The KEY IN3
subroutine is shown in listing 2. To install it, load track 5 from your
lower-case Emulation disk at address $5000 and track 9 at address $4000.
Bload j(EYIN3,A$59FE ($FEFE when the Monitor is loaded in its
proper location). Four small changes will complete the Monitor
modifications.

The RDKEY subroutine, at $FDOC, normally converts characters to
flashing mode when the cursor backs over them. If it is unchanged, the
flashing versions of the lower-case characters become a confusing assort­
ment of inverse numbers and punctuation marks, and the numbers be­
come inverse lower-case letters. All characters will be converted to
proper inverses if three bytes are altered:

Original
FD11: 29 3F AND #$3F
FD13: 09 40 ORA #$40

Modified
29 7F
EA
EA

AND #$7F
NOP
NOP

256

Modify the track 5 memory image from the Monitor with 5812:7F
EA EA.

In the Monitor KEYIN routine, replace the instruction to read the
keyboard with a jump to the new KEYIN3 routine.The Monitor com­
mand 5828:4C FE FE will replace the LDA $COOO (AD 00 CO) with
JMP $FEFE. All character input to the Monitor is converted to upper
case by an AND #$DF (29 DF) instruction at $FD82. The Monitor
won't interpret lower case, and it isn't likely that this part of the Moni­
tor is used by other programs. The conversion can be eliminated with
5882:EA EA if you want to be able to enter lower case in the Monitor
anyway.

A routine to store $3F in the inverse flag location at $32 should be
changed to store $7F instead. Enter 5982:7F to modify the track 5 image.
This completes the modification of the Monitor image used with Integer
Basic. Copy the modified Monitor to the Applesoft version with
4300 < 5800.5AFFM. Then write the modified tracks 5 (from $5000)
and 9 (from $4000) back on the Emulation disk.

With the character set installed in the Emulation program and the
Monitor patched for lower-case entry, one further change is needed on
the Emulation disk. The Applesoft inverse and flash commands should
also be made to produce readable output. The Pattern Location pro­
gram, presented in the second article as a tool for locating paddle rou­
tines in games, serves equally well to analyze the inverse and flash com­
mands in Applesoft. Since we know that the inverse flag is stored in $32,
one of three commands must put the value there: STY $32 (84 32), ST A
$32 (85 32), or STX $32 (86 32). Without much difficulty, we can locate
the following code:

F273 -
F275 -
F277 -
F279 -
F27B ­
F27D ­
F27F ­
F280 -
F282 -
F284 -

A9 FF
0002
A9 3F
A200
85 32
86 F3
60
A9 7F
A240
DO F5

LOA #$FF
BNE F279
LOA #$3F
LOX #$00
STA $32
STX $F3
RTS
LOA #$7F
LOX #$40
BNE $F27B

It looks like everything needed is right here. Changing $F278 from
$3F to $7F should fix the inverse problem. Further, it appears that ad­
dress $F3 must be used for the flashing mode. We could store a zero in
$F3 all the time, but this would waste a valuable page 0 location. A bet­
ter solution is to eliminate its use in the output routine. Looking for
ORA $F3 (05 F3) quickly shows the route:

DB62 -
DB64 -

05 F3
20 ED FD

ORA $F3
JSR $FDED

Replace the ORA instruction with a pair of NOP instructions and the
flashing mode disappears. The flashing and inverse modes both yield in­
verses of the desired characters .

These changes to Applesoft must be made on two different disk
tracks. Load· tracks 7 and 8 in addresses $4000 through $5FFF. Go to
the Monitor and type 5878:7F and then 587D:EA EA to make the first
change. Type 4162:EA EA to eliminate the ORA instruction, and write
both tracks back on the Emulation disk . . With these changes, the Apple­
soft inverse and flash commands both produce the inverse of the desired
character. Since Integer Basic doesn't have these commands, no more
changes are required. The lower-case Emulation disk is complete.

With these changes, the control-character codes, 0 through 31 and
128 through 159, have no role in normal character displays. You can
create your own special characters to go with these codes. You can use
the inverse flag, poke 50,31 , to print the inverse control characters, but
you will need your own routine to place the normal ones on the screen.

Many Apple II editors, both for Basic (such as PLE or GPLE) and
in editor/ assembler packages, generate the flashing cursor internally and
will show inverse lower case when the cursor goes over numbers. If you
use one frequently, you will probably want to change the cursor routine

SEPTEMBER 1983

to match the changes made on the Emulation disk. It is usually easy to
find the responsible routine. Just search for the ORA #$40 (09 40) com­
mand that sets the flashing mode in the normal character set. Most of
these programs use the Monitor KEYIN subroutine to read the key­
board, so they will automatically accept lower-case characters after you
have modified the Emulation disk.

Exotic Emulation. Let's look at the hardware setup that accom­
panies the Emulation mode and see what changes might produce useful
results. Here is the instruction sequence that turns on the Emulation
mode:

;$F FOO is the zero-page control register.
A56F - A9 00 LOA #$00 ;Select zero page = 0.
f\571 - 80 DO FF STA $FFDO

;$F FDF is the environment control register.

A574 - A9 FC LOA #$FC
A576 - 80 OF FF .J STA$FFDF

;Select environment­
;discussed below.

; $F FEF selects memory bank and 1/ 0 status.

A579 - AD EF FF
A57C - 80 EF FF

LOA $FFEF
STA$FFEF

;Retain same
;memory bank.

;$F FE3 is the data direction register for the
;A port of the E VIA. Set the
; Emulation bit to output status, so the
;STA $FFEF will turn on Emulation.

A57F - AD E3 FF
A582 - 09 40
A584 - 80 E3 FF
A587 - AD EF FF
A58A - 29 BO
A58C - 80 EF FF

LDA$FFE3
ORA#$40
STA$FFE3
LDA$FFEF
AND#$BO
STA $FFEF

;Set the Emulation mode
;bit in data direction
;control register.
;Reselect memory
;bank 0, and turn on
;Emulation mode.

Table I describes the uses of the bits in the environment register
($FFDF). It originally appeared in "III Bits: John Jeppson's Guided
Tour of Highway III" (May 1983 Softalk) . That article is an excellent
reference concerning the Apple III hardware features.

Value Bit · Function Bit=O Bit= 1
01 0 $FOOO - $FFFF RAM ROM
02 1 ROM# ROM#2 ROM#1
04 2 stack alternate normal
08 3 $C000 - $F FFF read/write read only
10 4 RESET key disabled enabled
20 5 video disabled enabled
40 6 $C000 - $CFFF RAM 1/0
80 7 clock speed 2MHz 1 MHz

Table 1. Environment register ($FFDF) description.

When the environment is set to $FC, the clock speed is I MHz; the
1/ 0, video, and reset key are all enabled; the memory in $COOO through
$FFFF is write-protected to behave as if it were ROM; the true ($01 00)
stack is used, and the ROM is deselected. Two changes look tempting
immediately. One is to install RAM in the $COOO through $FFFF
memory space, and the other is to run the "Apple I I" at 2 MHz. Both are
feasible, with the important limitation that most Apple III I/ O requires
the I MHz clock; so we can't set the Emulation mode clock permanent­
ly at 2 MHz.

The installation of RAM in high memory allows the use of a limited
selection of language-card software. There are two restrictions:

1. There is no bank selection in the $DOOO through $DFFF memo­
ry range, so programs that use the extra memory bank can't be
used.

2. Programs that switch back and forth between the language card
and ROM memories won't work. This includes the language-card
DOS, for example.

To use the all-RAM Emulation mode, you must disable a nasty func­
tion in DOS 3.3. During the boot process, DOS stores a zero in $EOOO.
The zero is supposed to be in the language card, but the language-card

SEPTEMBER 1983

control instructions don't do anything in the Apple III. In normal Emu­
lation mode, the memory is write-protected, so the store instruction has
no effect.

A disk that already contains DOS can be fixed with the aid of the
Trackmover program. Read track 0 into memory at address $5000. The
Monitor command 56D3:EA EA EA replaces the unwanted instruction
with three NOPs. Rewrite track 0 on any DOS 3.3 disk that you want to
use with RAM in high memory. Disks initialized by the modified DOS
will have the same DOS changes. Since the language-card initialization is
useless in Emulation mode, it can be eliminated from any disk you expect
to use exclusively on the Apple III.

After you have a disk that will boot DOS without destroying Basic, a
one-byte change of the £mulation program will select Emulation mode
without write-protecting the high memory. Read track 0 of the Emula­
tion disk into memory at $4000. Use the Monitor command 4575:F4 to
change the value in the environment register from $FC to $F4 and re­
write track 0 on the disk. The change eliminates the high-memory write
protection without changing any other part of the Emulation setup.

As a finale, we consider a Hybrid mode, in which Apple II software
has full control of the Apple III environment. Advantages include num­
ber crunching, access to the 6502 and system clocks, experimentation
with Apple III hardware, and some novelty features. Applesoft at 2 MHz
is faster than Business Basic, because there is no memory management
overhead. The system clock normally cannot be read in Emulation
mode, because the zero-page register switches the output bytes. Experi­
mentation with routines to control Apple III hardware is easier in the
simpler Apple II software environment than under SOS. The color text
display mode is a delightful novelty. It would be welcome on the real
Apple II.

There are some important limitations to the Hybrid mode, too. It's
not an environment for big software projects or for most commercial
programs. DOS 3.3 won't select drive 2 in the Hybrid mode, and only
three of the Apple III video modes are usable with Apple II software.

A two-byte change in the Emulation program eliminates the Apple I I
switch to begin the production of a Hybrid Emulation disk. Use an
Emulation disk already configured for lower case, because we will use
base page address $F3 for color text utilities. Read track 0 into memory
at $4000. The Monitor command 4582:EA EA replaces the ORA #$40
instruction with two NOP instructions. Restore the modified track 0 to
the Emulation disk . If you boot an Apple II disk at this stage, the screen
fills with a checkerboard of miscellaneous colors (or shades of gray). The
Monitor doesn't work at all. We have to chase down some problems to
build a working computer.

The checkerboard screen display occurs because the Apple II
Monitor !NIT routine ($FB2F) sets the display switches for the Apple
III color text mode. In this mode, each character in text page one ($400
through $7FF) is affected by the contents of the corresponding address in
text page two ($800 through $BFF). The most significant nibble deter­
mines the character color, and the least significant nibble determines the
background color. On a monochrome monitor, $FO produce& the
normal light-on-dark display, and $OF yields an inverse display. On a
color monitor, the colors are those listed on page 41 of the Standard De­
vice Drivers Manual.

The Monitor program doesn't work because it expects to find data
tables in $FFDO through $FFEF, where there are Apple III control
registers. We will move the data tables into parts of the Monitor that
can't be used in the Hybrid mode. Listing 3 illustrates subroutines that
make the color text mode a usable addition to Applesoft programs, read
the system clock, and control the 6502 clock and video output. All are
shown on memory page three, but they could be installed permanently in
portions of Applesoft and the Monitor used by the cassette load and save
commands and the lo-res graphics commands.

Initializing the color text mode requires filling text page two with $FO
bytes to give a normal display. This usually destroys the first $400 bytes
of an Applesoft program, so the initializing routine beginning at $300 re­
locates the start of Basic programs to $COO and calls the Applesoft new
program instruction. Because of this, the color-text initialization, call
768, must be the last instruction in any Basic program in which it is used.

257

To restore the screen to a normal display without destroying Basic
programs, call 787. The color-text routines use the base page address that
we eliminated from the Applesoft flashing mode ($F3) to store the value
used to fill text page two. Using C for the character color and B for the
background, each with a range 0 to 15, VAL = B + 16*C. Then poke
243,V AL : call 791 to color the screen and characters to your liking. To
fill just one line poke 243,VAL: poke 64,line: call 807. This feature has
real utility. If VAL = 0, the line disappears from view, but the charac­
ters are still in screen memory. Set V AL=240 and the characters reap­
pear in normal display. For inverse, use VAL= 15. The Emulation pro­
gram uses this technique to change menu fields from normal to inverse
and to erase and restore lines of text.

Only three of the Apple III display modes can be used easily with Ap­
ple II software. Turn on full-screen, hi-res, black-and-white graphics with
LOA $C057 or peek(49239). Return to text mode with LDA $C056 or
peek(49238). The forty-column color-text switch is LDA $C05 I or
peek(49233). Return to normal text mode and normal use of the $800
through $BFF address range with LDA $C050 or peek(49232). John
Jeppson described the soft switches for all of the Apple I II display modes
in the article mentioned earlier.

Here are the steps needed to complete the Hybrid Emulation disk af­
ter track 0 has been modified as described:

I. Using Trackmover and an Emulation disk already configured for
lower case, load track 5 at $5000 and tracks 8 and 9 at $6000.

2. Use the Monitor to install the subroutine table in its new lo­
cation with 59CE < FFE3.FFFFM and 74CE < FFE3.FFFFM.
Move the character table with 5319 < FFCC.FFE2M and 6E 19 <
FFCC.FFE2M.

3. References to the Monitor data tables will be corrected with the
following entries:

5048: 19 FB
5A7E: 19 FB
757E: 19 FB

EXTENSION
for the Apple///™

•Change f ile types.
•Reset protection.
•High speed disk routines, 10
times f aster than Basic, up
to 30% savings in disk space.
•Access to any block on a
disk.

If you program
in Business

Basic,
you shouldn't
be without it.

•Array manipulation, insert -
delete elements, move sections
of arrays, search array s.
'•Character Set Editor, create
or edit your own character sets.

•Disk Block Editor, view or
edit any block on a disk.
•And more, all f or only 89 5.

FOXWARE PRODUCTS
2506 W. Midwest Dr., Taylorsville, UT 84118

(801) 364-0394
A pple Ill is a regis1ered 1rademarh of Apple Compw er, i nc.

258 t1SOttALK SEPTEMBER 1983 :J

5AC2:CE FE
75C2:CE FE

4. Disable the Applesoft lo-res-graphics commands gr, hlin, and vlin
with

683E:60 EA EA
6990:60 EA EA
684C:60 EA EA

5. The disk will boot in forty-column, black-and-white text mode
with two additional changes: 563A:50 and 313A:50.

6. Restore the three tracks to their proper locations on the Emula- _
tion disk.

Perhaps the most intriguing aspect of the Hybrid mode is the use of
the 2-MHz processor speed with Applesoft programs. The 6502 clock
can be set to 2 MHz for numerical processing but should be returned to I
MHz for 1/0 operations. Since there is no SOS in this mode, you have
the responsibility of taking care of it. Using the utilities shown in listing
3, call 842 to set the clock to 2 MHz and call 851 to return to I MHz. For
even faster computations, you can turn off the video screen with call 860
and turn it back on with call 869.

As an example of the gains possible with this novel variation of Emu­
lation, let's compare the performance of Applesoft at 2 MHz with that of
the Basics tested on Jerry Pournelle's 20-by-20 matrix multiplication
benchmark program described in the October 1982 issue of Byte maga­
zine ("User's Column"). Table 2 shows the results obtained with several
versions of Basic.

Business Basic, Video on
MBASIC (Softcard Ill)
Applesoft, 1 MHz (normal)
Business Basic, Video off
Applesoft, 2 MHz, video on
Applesoft, 2 MHz, video off

Table 2. Execution times for the 20-by-20 matrix
multiplication benchmark program.

3:16
3:13
3:09
2:35
2:10
1 :41

The results in the normal operating modes were surprising, because
Business Basic is usually a little faster than Applesoft in numerical bench­
marks. Business Basic has a definite advantage ifthere is much 1/ 0. The
Applesoft advantage at 2 MHz was expected, because it has none of the
software overhead needed to manage the full Apple III memory.

All of the benchmark programs used the Apple III system clock as a
stopwatch. Listing 3 includes a clock routine that can be used with
Applesoft programs in the Hybrid mode. It reads all eight clock bytes
into a buffer and then prints the hour, minute, and second on-screen with­
out a carriage return. Each byte is encoded as two BCD nibbles, so the
printed hex value appears to be the correct decimal number. For other
uses, the BCD should be decoded to binary or ASCII.

The Hybrid mode provides full access to all of the Apple III hard­
ware features, including memory bank switching, extended indirect ad­
dressing, and read/write RAM in $COOO through $FFFF, including the
area normally used for 1/ 0. SOS was designed to free the user from
memory management details, but an imaginative hobbyist could create
a 192K RAM-based pseudodisk for the Emulation Apple.

The extensions of the Emulation mode discussed in these three
articles arose from a variety of intended applications. A solution to the
games problem was required to please the younger members of the
author's family when the Apple III replaced an Apple II. Lower-case
character display and entry were needed for cbmpatibility with Apple II
software already on hand. The development of the Hybrid mode was
spurred by a data-taking application that demanded use of the clock, fast
computations, and usable software in just a few days. Taken together,
these projects 'emphasize that the Emulation mode offers much more
than a partial imitation of the Apple II. For those who care to explore it,
the Emulation program provides a route to the very heart of the
Apple III.

Listing 1. The character-set editing program, Charedil, in Integer Basic .
100 GOTO 5000
120 PRINT "START(HEX): ";: INPUT A$: GOSUB 2040
140 IF A= O THEN END
160 L= A+ 1024

180 FOR l=A TO L
200 P= PEEK (I)
220 FOR J = 1 TO 8
240 TAB J+ 1: IF P MOD 2 THEN PRINT"+";
260 P= P/ 2
280 NEXT J
300 GOSUB 1560: TAB 20: PR INT R$
320 X= PEEK (V)
340 IF X> 128 THEN 440
360 A=O
380 NEXT I
400 A= O
420 GOTO 120
440 POKE Q,O
460 IF X=195 THEN 1000 (195 = "C")
480 IF X=211 THEN 1280 (211 = "S")
500 PRINT "ED IT WHAT ADDRESS? ";: INPUT A$
520 GOSUB 2040
540 IF A= O TH EN 120
560 PRI NT "I NPUT AN 8-CHARACTER STRING"
580 PRINT "SPACE FOR BLANK"
600 PR INT "ANY OTHER CHARACTER FOR SET"
620 P = PEEK (A)
640 PRINT "OLD BYTE - > ";
660 FOR J= 1 TO 8
680 TAB 11 +J : IF P MOD 2 THEN PR INT "X";
700 P = P/ 2
720 NEXT J
740 TAB 20: PR INT"<- "
760 PRI NT "N EW BYTE -> ";: INP UT S$
780 . M= O
800 FOR K=8 TO 1 STEP - 1
820 P= (S$(K,K)#" ")
840 M= 2*M+ P
860 NEXT K
880 11=M: GOSUB 1580
900 PR INT "M = "; R$
920 11 = A: GOSUB 1580
940 PRINT "A = ";R$
960 POKE A,M
980 GOTO 120
1000 PRINT "CLEAR FLASH ING BIT"
1020 PRINT "START ADDRESS: ";: INPUT A$
1040 GOSUB 2040
1060 IF A=O TH EN 120
1080 S = A ,
1100 PRINT "LAST ADDRESS: ";: INPUT A$
1120 GOSUB 2040
1140 IFS >A THEN 120
1160 FOR I =S TO A
1180 X= PEEK (I)
1200 IF X>= 128 THEN X=X - 128
1220 POKE l,X
1240 NEXT I
1260 GOTO 120
1280 PRINT "SET FLASHING BIT"
1300 PR INT "START ADDRESS: "·· INPUT A$
1320 GOSUB 2040
1340 IF A=O TH EN 120
1360 S = A
1380 PRINT "LAST ADDRESS: ";: INPUT A$
1400 GOSUB 2040
1420 IF S>A THEN 120
1440 FOR I =S TOA
1460 X·- PEEK (I)
1480 IF X<128 THEN X=X + 128
1500 POKE l,X
1520 NEXT I
1540 GOTO 120
1560 11 = I
1580 R$ = '"'
1600 F= O: IF 11 >O THEN 1660
1620 Z=NN*(11 < NN)
1640 11 =ABS (ABS (11 - Z)- Z+ MM):F = 1
1660 FOR K=1 TO4
1680 Z=l 1/B:R= l1 MOD B
1700 N=R + 1
1720 A$ = H$(N, N)
1740 A$(2)= R$

: SEPTEMBER 1983

1760
1780
1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
2000
2020
2040
2060
2080
2100
2120
2140
2160
2180
2200
2220
2240
2260
3000
3020
3040
3060
3080
3100
3120
3140
4000
4100
4120
4140

R$=A$
IF Z=O THEN K= 4
11 =Z
NEXT K
IF P=O THEN RETURN
M = 4- LEN(R$):A$ ="0000"
IF M= O THEN 1960
A$ = A$(1, M)
A$(M+1) = R$
R$ = A$
A$ = R$(1, 1):R$ = R$(2)

. C= ASC(A$) - 167
A$ = H$(C,C):A$(2) =R$: R$ =A$
RETURN
A= O
FOR J = 1 TO LEN(A$)
C= ASC(A$(J,J)) - 176
IF C>9 THEN C=C-7
IF C< 0 THEN 2240
IF C > 15 THEN 2240
IF A >2047 THEN A=A-4096
A=A+C+ 15*A
NEXT J
RETURN
PRINT "HEX ENTRY ERROR"
A = O: RETURN
CALL -936
PRINT "HEX TO DECIMAL CONVERSION"
PRINT "ENTER 0 TO END"
INPUT "HEX VALUE: ",A$
GOSUB 2040
IF A= O THEN END
PRINT "DECIMAL IS ",A
PRINT : GOTO 3060
CALL - 936
PRINT "DECIMAL TO HEX CONVERSION"
PRINT "ENTER 0 TO END"
INPUT "DECIMAL VALUE",11

SOtTALK9

4160
4180
4200
4220
5000
5020

5040
5060
5080
5100
5120
5140
5160
5180
5200
5220
5240
5260
5280
5300
5320
5340
5360
5380
5400
5420
5440
5460
5480
5500
5520
5540
5560
5580
5600
5620
5640

IF 11 =O THEN END
GOSUB 1580
PRINT R$ _
PRINT : GOTO 4140
DIM A$(4),R$(4),H$(16),S$(16)
B= 16:H$ ="01 23456789ABCDEF":N N = -16384:
MM=NN + NN .
V= - 16384:Q = - 16368
CALL - 936
VTAB 5
PRINT " 1 - CHARACTER SET EDITOR"
PRINT "2 - HEX TO DECIMAL CONVERSION"
PRINT "3 - DECIMAL TO HEX CONVERSION"
PRINT "4 - QUIT"
PRINT : PRINT : INPUT "CHOOSE A NUMBER",C
IF C>3 OR C<1 THEN END
IF C= 3 THEN 4000
IF C= 2 THEN 3000
CALL - 936
PRINT " CHARACTER SET EDITOR"
PRINT : PR INT
PRINT "AT THE PROMPT 'START(H EX)' --": PRINT
PRINT "ENTER THE HEX ADDRESS OF CHARACTERS"
PRINT " YOU WANT TO SEE DISPLAYED."
PRINT " CHARACTER BYTES AND ADDRESS"
PRINT " LABELS WILL SCROLL PAST."
PRINT "ENTER 0 TO EXIT PROGRAM"
PRINT : PRINT
PRINT "DURING SCROLLING DISPLAY --": PRINT
PRINT "HIT 'C' TO CLEAR FLASHING MODE"
PRINT " IN AN ADDRESS RANGE"
PRINT "HIT 'S' TO SET FLASHING MODE"
PRINT "ANY OTHER KEY TO REQUEST BYTE EDIT"
PRINT
PRINT "I F EDIT ADDRESS = 0, RETURN TO 'START'"
PRINT : PRINT : PRINT
INPUT "PRESS RETURN",A$
GOTO 120

259

> - o-o-o-o-a-o-g-~-o-~----_,._.....,_..,..._,,__, ___ ...,.._..

I

NAME THAT KEY
THE FIRST

USER DEFINABLE KEYBOARD
• Define each key with up to 8 characters of your choice

directly from your computer keyboard
• Redefine any key - anytime - for any software prog ram
• Each key is completely user definable without software or

disk interaction
• 62 user definable keys (31 lower case/31 shifted) per

keyboard
• Stores up to 4 (62 key) keyboards in its own memory
• Switch between keyboards at the touch of a button making

all 248 user defined keys available
• KeyWiz is complete - no other parts to buy or PROMs to

purchase and does not disable your keyboard

icewuz®W
(Very Intelligent Peripheral)

10 DAY TRIAL WITH
MONEY BACK GUARANTEE

Full 1 Year Warranty

ORDERS ONLY 800-225-0091
INFORMATION 609-693-0002

: - Vl50' J OE'LER'"OU"IESIN,nEO 1,111
©S[fcD Creative Computer Peripherals Inc.

Aztec Environmental Center
1044 Lacey Road, Forked River, N.J. 08731
THE .BIG NAME IN SMALL COMPUTER PERIPHERALS

Apple 11 is a .registered trademark of Apple Computer, Inc.
Ace is a re91stered trademark of Franklin Computer, Inc.
TRS·80 is a registered trademark of Tandy Corporation

TUAN THE POWER "OFF and
when you turn it on again·

it's sti ll there!

See us at

tlapplafil::--
c•• ••,t• ••••• •
Moscone Center
San Francisco
Friciay-Sunday

October 28-30, 1983

(ALL 248 Of THEMI)

Send $3.00 for our informative User Manual

D For Apple 'll ·,lie, Ace'. (others coming) comes with plastic
Applesoft Basic Template, Pascal Template and 2 blanks

D For TRS-80· Model 111
comes with 2 Blank Plastic Templates s439.00

Add $8.00 for Shipping / Hand l ing

Also ·still available· our KeyWiz 83 & Convertible
._..,.._..__,_..,. _____ .__. _ _,..-.c1 -a-c~~-a-o-a - a-o..-a-a-c

260 SEPTEMBER 1983

Listing 2. KEYIN3, an Emulation Monitor patch that allows ful l 0307: SS 67 38 STA ASLO

keyboard input in Emulation mode. 0309: A9 oc 39 LDA #$0C
030B: SS 68 40 STA ASH I
030D: 20 4B D6 41 JSR NEW ;CALL APPLESOFT NEW

1 ***"* ********** ******"****** ******** *** ROUTINE
2 0310: AD S1 co 42 LDA COLOR ;TURN ON COLOR MODE
3 KEYIN3: Lower-case 43 • Set intensity for normal screen
4 keyboard input routine . 44 • and set to line O.
5 for Apple II Emulation

03 13: A9 FO 4S LDA #$FO ;CHAR ON, BACKGND OFF 6 mode on the Apple Ill.
031S: 8S F3 46 STA IN MASK 7

8 0317: A9 00 47 DOSCRN LDA #$00 ;DO WHOLE SCREEN

9 0319: SS 40 48 STA LINE
10 0318: 20 27 03 49 DOLIN ES JSR CLINE ;FROM LINE TO BOTTOM
11 * ** ************* ** ***** ****** *********** 031E: E6 40 so INC LINE
12 0320: Ag 17 S1 LDA #$17
13 KBDA EQU $COOO :KEYBOARD "A" REGISTER 0322: cs 40 S2 CMP LINE
14 KBDB EQU $COOS :KEYBOARD "B" REGISTER 0324: BO FS S3 BCS DOLIN ES
15 KBDSTRB EQU $C010 :KEYBOARD RESET ADDRESS 0326: 60 S4 RTS
16 A4L EQU $42 ;MONITOR SCRATCH LOCATION SS Routine to calculate base address
17 A4H EQU $43 ;SCRATCH, HIGH BYTE S6 • of line and sat its intensity mask.
18
19 ORG $FEFE S7 The routine is almost identical

FEFE: 84 43 20 KEYIN3 STY A4H :SAVE Y S8 with the BASCALC routine in the

FFOO: 86 42 21 STX A4L :SAVE X S9 Apple 11 Monitor, at $FBC1 .

FF02: AD 00 co 22 LOA KBDA :CHECK KEYBOARD "A" 0327: AS 40 60 CLINE LDA LINE
REGISTER 0329: 4A 61 LSR

FF05: AB 23 TAY :STORE DATA IN Y 032A: 29 03 q2 AN D #$03
REGISTER 032C: 09 08 63 ORA #$08 :SELECT TEXT PAGE 2!

FF06: AD 08 co 24 LOA KBDB :READ KEYBOARD "B" 032E: SS 43 64 STA BASH ;ADDRESS HIGH BYTE REGISTER
FF09: AA 25 TAX :STORE IN X 0330: AS 40 6S LDA LINE ;NOW DO LOW BYTE

FFOA: 2C 10 co 26 BIT KBDSTFJB :RESET KEYBOARD 0332: 29 18 66 AND #$18

FFOD: 29 08 27 AND #$08 :WAS THE ALPHA LOCK 0334: 90 02 67 BCC BSCLC

KEY SET? 0336: 69 7F 68 ADC #$7F
FFOF: DO 06 28 BNE FILTER :NOT = MEANS NO 0338: SS 42 69 BSCLC STA BASL
FF1.1: 98 29 TYA :IF ALPHA LOCK, JUST 033A: QA 70 ASL

TRANSFER DATA 033B: OA 71 ASL
FF12: A6 42 30 RTS1 LOX A4L :RESTORE X 033C OS 42 72 ORA BASL
FF14: A4 43 31 LOY A4H :RESTORE Y 033E: SS 42 73 STA BASL
FF16: 60 32 RTS 74 Now put the value in INMASK into
FFt7: 98 33 FILTER TYA ;CHARACTERS BELOW "A"

7S each position in the line. ARE OKAY
FF18: C9 C1 34 CMP #$C1 ;SO JUST RETURN 034Q: AO 27 -76 LDY #$27 ;CHARACTERS 0 - 39

FF1A: 30 F6 35 BMI RTS1 0342: AS F3 77 LDA IN MASK ;VALUE TO STORE

FF 1C: C9 DB 36 CMP #$DB ;CHARACTER ABOVE Z? 0344: 91 42 78 STO STA (BASL),Y
FF1E: 10 F2 37 BPL RTS 1 ;YES, NO CHANGE 0346 88 79 DEY
FF20: BA 38 TXA ;THE REST TESTS THE 0347: 10 FB 80 BPL STO

SHIFT KEY 0349: 60 8 1 RTS
FF21 29 02 39 AND #$02 ;HERE'S THE SHIFT BIT 82
FF23: AA 40 TAX ;SAVE THE RESULTS 83 Set clock to 2 MHz
FF24: 98 41 TYA ;NOW GET DATA

8l\ FF25: EO 00 42 CPX #$00 ;X= O IF SHIFT
FF27: DO E9 43 BNE RTS1 ;ELSE NO CHANGES 034A: AD OF FF SS FAST LDA ENVIRON

FF29: 18 44 CLC ;DON'T CHANGE 0340 29 7C 86 AND #$7C

CHARACTER BY ACCIDENT 034F: 80 OF FF 87 STA ENVIRON

FF2A: 69 20 45 ADC #$20 ;DO THE SHIFT 03S2: 60_ 88 RTS

FF2C: DO E4 46 BNE RTS 1 :BRANCH TO RETURN 89
(NEVER ZERO) 90 Set clock to 1 MHz

FF2E: 00 47 BRK 91
03S3 AD DF FF 92 SLOW LDA ENVIRON
03S6: 09 80 93 ORA #$80
03S8 80 DF FF 94 STA ENVIRON

Listing 3. Utility routines for use in the Hybrid Emulation mode. 03SB: 60 95 RTS
96
97 Turn off video screen

1 * ****************************'"****** **** 98
2 035C: AD DF FF 99 V I DOFF LOA ENVIRON
3 APPLE Ill HYBRID 03SF: 29 DC 100 AND #$DC
4 EMULATION MODE 0361: 80 DF FF 101 STA ENVIRON
s Color-text control 0364: 60 102 RTS
6 1 MHz/2 MHz control 103
7 Video on/off switch 104 Turn on video screen
8 105
9

036S: AD DF FF 106 VIDON LDA ENVIRON 10
11 0368: 09 20 107 ORA i/$20

12 ************"*"**** ******************* ** 036A: 80 OF FF 108 STA ENVIRON

13 036D: 60 109 RTS

14 ENVIRON EQU $FFDF ;ENVIRONMENT REGISTER 110
1S NEW EQU $D64B ;APPLESOFT " NEW" 111 Subroutine to read Apple Ill
16 COLOR EOU $COS1 ;COLOR SWITCH 11 2 • system clock with Apple II
17 IN MASK EOU $F3 ;INTENSITY MASK . 113 '. software in Hybrid Emulation
18 LINE EQU $40 ;LINE TO MASK 11 4
19 BASL EOU $42 ;LINE BASE A°DDRESS 036E: A2 07 115 RCLOCK LDX #$7 ;THERE ARE 8 BYTES
20 BASH EQU $43 ;HIGH BYTE 0370: BE DO FF 116 LOOP STX ZPAGE ;SET CH IP REGISTER
21 sASIC EQU $COO ;START OF BASIC PROGS 0373: AD 70 co 117 LDA CLOCK ;READ CLOCK
.22 ASLO EQU $67 ;PROGRAM START POINTER 0376: 90 78 02 118 STA BUFFER,X ;STORE DATA
23 ASHI ECiU $68 ;HIGH BYTE 0379: CA 119 DEX
24 CLOCK EQU $C070 ;CLOCK CHIP ADDRESS 037A: 10 F4 120 BPL LOOP ;> =0, ANOTHER VALUE
2S PR BYTE EQU $FDDA ;PRINT BYTE SUBROUTINE 037C : AD 7C 02 121 LDA BUFFER + 4 ;PR INT HO UR
26 COUT EQU $FDED ;CHARACTER o'UTPUT
27 ZPAGE EQU $FFDO ;ZERO-PAGE REGISTER

037F: 20 DA FD 122 JSR PR BYTE

28 BUFFER EQU $278 ;= 760 DECIMAL 0382: A9 BA 123 LOA #COLON

29 COLON rnu $BA ;ASCII COLON 0384: 20 ED FD 124 JSR GOUT

30 0387: AD 7B 02 12S LOA BUFFER +3 ;MIN UTE

31 ORG $0300 038A: 20 DA FD 126 J SR PR BYTE

32 • Set Applesoft pointers so programs 0380: A9 BA 127 LDA #COLON
33 • will start at $COO, rather than 038F: 20 ED FD 128 JSR GOUT
34 • the usual $800 0392: AD 7A 02 129 LDA BUFFER + 2 ;SECOND

0300: A9 00 3S LOA #$00 0395: 20 DA F D 130 J SR PR BYTE
0302: SD 00 DC 36 STA BASIC 0398: 60 131 RTS ;RETURN TO CALLER
030S: A9 01 37 LOA #$0 1 0399: 00 132 BRK •

